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The heparin polysaccharide is among the most acidicHeparin-Induced Cancer
of all natural products with a single molecule carryingCell Death from 75 to 100 negative charges [1]. As a result, heparin
interacts with a large number of proteins and other basic
molecules through ionic and hydrogen bonding interac-
tions [2]. A widely used therapeutic anticoagulant, hepa-Heparin uptake into cancer cells can be promoted
rin is biosynthesized and stored intracellularly exclu-by conjugation to poly (�-amino ester)s. Internalized
sively in mast cells. Mast-cell-rich animal tissues, suchheparin is cytotoxic, causing cancer cell death by in-
as porcine intestine and bovine lung, are used as com-terfering with transcription factor activity and inducing
mercial sources of heparin. Many of the biological activi-apoptosis, but only certain poly(�-amino ester)s pro-

mote this activity. ties ascribed to heparin (i.e., anticoagulation, regulation
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Figure 1. Structure of Heparin and Poly (�-Amino Ester)

Structure of a small heparin chain (A) and that of a poly (�-amino ester) (B) capable of carrying heparin into the cell.

of cell differentiation and cell growth through growth related glycosaminoglycans, it is hard to imagine a
mechanism for its uptake by cells through passive diffu-factors, control of chemokine signaling, etc.) are more

correctly ascribed to the structurally related intercellular sion across cell membranes. There is, however, evi-
dence that subcutaneously administered heparin [4] andglycosaminoglycan, heparan sulfate [3].

Because of the highly charged nature of heparin and even orally administered heparin [5] can cross barriers

Figure 2. Heparin-Induced Cell Death

Proposed endocytotic mechanism for hepa-
rin cellular uptake of heparin (red) poly
(�-amino ester) (blue) complex escape, distri-
bution through the cell, displacement of DNA
(green), complexation with transcription fac-
tor (TF in black), and resulting apoptosis and
cell death. Fibroblast growth factor (FGF) and
fibroblast growth factor receptor (FGFR) in-
teract with heparan sulfate proteoglycans
(HSPG) and form a complex [8] that can be
similarly transported into the cell [7].
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and enter cells. The bioavailability of glycosaminogly- and caspase activation, ultimately inducing apoptotic
cans can be enhanced through the use of cationic and cell death. The heparin-poly (�-amino ester) complex
peptoid-based excipients [6] or by reducing their molec- appears to be internalized through endocytosis and may
ular weight (i.e., low molecular weight heparins [1]). enter the cytosol through lysosomal escape mediated
There is also evidence that heparan sulfate and related by cationic poly (�-amino ester) [15] (Figure 2).
glycosaminoglycans in the ECM and on the cell surface The significance of this study for influencing the de-
can be internalized by cells while bound to receptors sign of future cancer-killing compounds is clear. Cancer-
[7]. For example, the uptake of heparin involves com- ous cells have faster endocytic rates than normal cells,
plexation [8] and internalization [7] with fibroblast resulting in enhanced rates of heparin-poly (�-amino
growth factor and fibroblast growth factor receptor. ester) uptake and thus, poly (�-amino ester)-mediated

Most research on heparin has focused on its anticoag- internalization of heparin might offer a new, selective
ulant activity—this has resulted in the development and approach for inducing cancer cell death. This study
successful introduction of low molecular weight hepa- should also result in a better understanding of endocytic
rins into the marketplace [9]. Heparin and related glyco- uptake of both heparin and DNA polyanions. Moreover,
saminoglycans, however, interact with a diverse group since cell surface heparan sulfate is similarly trans-
of proteins [2] exhibiting a multiplicity of important phys- ported, this study may offer an improved understanding
iological and pharmacological biological activities [1, 2]. of growth factor [7] or even virus uptake [16] by cells
Among the most recently discovered and exciting of through their heparan sulfate receptors [3].
these activities is the role of heparin in cancer [10, 11,
12]. While initial discoveries pointed to its important role
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issue [13], suggest the anticancer activity ascribed to Biology, and Chemical and Biological Engineering
heparin is considerably more complex. Rensselaer Polytechnic Institute
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